Multi-level SVM Based CAD Tool for Classifying Structural MRIs
نویسندگان
چکیده
The revolutionary developments in the field of supervised machine learning have paved way to the development of CAD tools for assisting doctors in diagnosis. Recently, the former has been employed in the prediction of neurological disorders such as Alzheimer’s disease. We propose a CAD (Computer Aided Diagnosis tool for differentiating neural lesions caused by CVA (Cerebrovascular Accident) from the lesions caused by other neural disorders by using Non-negative Matrix Factorisation (NMF) and Haralick features for feature extraction and SVM (Support Vector Machine) for pattern recognition. We also introduce a multi-level classification system that has better classification efficiency, sensitivity and specificity when compared to systems using NMF or Haralick features alone as features for classification. Cross-validation was performed using LOOCV (Leave-One-Out Cross Validation) method and our proposed system has a classification accuracy of over 86%.
منابع مشابه
LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer's disease
This paper presents a novel computer-aided diagnosis (CAD) tool for the diagnosis of the Alzheimer’s disease (AD) using structural Magnetic Resonance Images (MRIs). The proposed method uses information learnt from the tissue distribution of Gray Matter (GM) and White Matter (WM) in the brain, which is previously obtained by an unsupervised segmentation method. The tissue distribution of control...
متن کاملAutomated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm
High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality...
متن کاملHardware Acceleration of SVM-Based Classifier for Melanoma Images
Melanoma is the most aggressive form of skin cancer which is responsible for the majority of skin cancer related deaths. Recently, image-based Computer Aided Diagnosis (CAD) systems are being increasingly used to help skin cancer specialists in detecting melanoma lesions early, and consequently reduce mortality rates. In this paper, we implement the most compute-intensive classification stage i...
متن کاملSpace Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters
Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is 
its complex and time-consuming computations in real-time ...
متن کاملSpace Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters
Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is its complex and time-consuming computations in real-time im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1706.08227 شماره
صفحات -
تاریخ انتشار 2017